NATIONAL MANAGEMENT COLLEGE, THUDUPATHI. CA FOUNDATION PAPER – 3: BUSINESS MATHEMATICS, LOGICAL REASONING AND STATISTICS Revision test 7 (02.04.2022)

Time Allowed : 1/2 hour Maximum Marks: 25 1)Find the value of dy /dx if $y = x^x$ (a) $x^x \log_e x$ (b) 1+logx (d) none of these (c) y logx 2) If $f(x) = a (x^2 + x + 1)^2$ and f'(-1) = -6 then the value of a =(c) 3 (d) 4 (a) 1 (b) 2 3) If $2^{x} - 2^{y} = 2^{x+y}$, then dy/dx at x = y = 2 a) 1 b) 2 c) 4 d) 5 4) If the Cost of function of a commodity is given by $= 150x - 5x^2 + \frac{x}{6}$, where C stands for cost and x stands for output. If the average cost is equal to the marginal cost then the output x = _____ (a) 5 (b) 10 (c) 15 (d) 20 5) If $y = \frac{x^4}{e^x}$ then dy/dx is equal to : a) $\frac{x^3(4-x)}{(e^x)^2}$ b) $\frac{x^3(4-x)}{(e^x)}$ c) $\frac{x^2(4-x)}{(e^x)}$ d) $\frac{x^3(4x-1)}{(e^x)}$ 6) The speed of a train at a distance x (from the starting point) is given by $3x^2 - 5x + 4$. what is the rate of change (of distance) at x = 1? a) -1 b)0 d) 2 c) 1 7) U = $5t^4 + 4t^3 + 2t^2 + t + 4$ at t = -1 find dU/dt a)-11 b)11 c)-16 d)16 8) The gradient of the curve $y = 2x^3 - 3x^2 - 12x + 8$ at x = 0 is a) -12 b) 12 c) 0 d) 1 9) Find slope of tangent of curve Y = $\frac{x-1}{x+1}$ at x = 2b)5/17 c) 9/11 d)None of these a)3/16

10) If $y = 2x + \frac{4}{x}$, then $x^2 \frac{d^2 y}{dy^2} + x \frac{dy}{dx} - y$ yields,								
a) 3	b) 1		c) 0	d) 4				
11) . If $f(x) = x^k$ and f `(1) = 10 then the value of k is								
a)10	b) -10	c) 1/1	0	d) none of these				
12) Given x = 2t + 5; y = t^2 -2, then dy/dx is calculated as:								
a) t	b) 1/t	c) -1/t	d) none of these					
13) If $x\sqrt{1+y} + y\sqrt{1+x} = 0$, then $(1+x)^2 \frac{dy}{dx} =$								
a) 0	b) 1	c)-1	d) 2					
14) The cost of C of a product is a function of the quantity x of the product: C(x) = $x^2 - 400x + 50$. Find the quantity for which the cost is minimum.								
a) 1000	b)1500	c)2000	0	d) 3000				
15) If $u = x^m y^n$ then								
a) du = mx ^{m-1}	$y^{n} + nx^{m}y^{n-1}$	= mdx + nd	ly					
c) $udu = m x$	dx + n y dy	d) $\frac{du}{u} = m \frac{dx}{x} + n \frac{dy}{y}$						
16) The maximum value of $\left(\frac{1}{x}\right)^{x}$ is								
a) <i>e</i>	b) $e^{\frac{1}{e}}$	$c)\left(\frac{1}{e}\right)^{e}$	d)none	e of these				
17) The slope of the tangent to the curve $y = x^2 - x$, where the line y=2 cuts the curve in the first quadrant is,								
a) 2	b) 3	c) -3		d) -2				

18) If $y = x^a + a^x + x^x + a^a$ being "a" constant then dy/dx is

a) $ax^{a-1} + a^x loga + x^x (logx + 1)$ b) $ax^{a-1} + a^x loga + x^x (logx - 1)$ c) $ax^{a-1} + a^x loga - x^x (logx + 1)$ d) none 19) The derivative of a function $\sqrt{x + \sqrt{x}}$ is

a) $\frac{1}{2\sqrt{(x+\sqrt{x})}}$	b) 1+ $\frac{1}{2\sqrt{x}}$	c) $\frac{1}{2\sqrt{x+\sqrt{x}}}$	$\frac{1}{c}(1+\frac{1}{2\sqrt{x}})$	d)none of these				
20)Find $\frac{dy}{dx}$, if $Y = e^{\log(\log x)}$,								
a) x b) $\frac{1}{x}$		c) $\frac{1}{logx}$	d) $e^{\log(logx)}$					
21) $y = x^n$ then $\frac{dy}{dx}$ =								
a) $\frac{x^{n+1}}{n+1}$	b) nx^{n-1}	c) <i>x</i> ^{<i>n</i>-1}	d) <i>nx</i>	d) <i>nx</i> ^{<i>n</i>}				
$22)\frac{d(constant)}{dx} =$								
a) 1 k	o) constant	c) 0	d)none o	f these				
23) A company can produce a maximum of 1500 widgets in a year. If they sell x widgets during the year then their profit, in dollars, is given by, P(x)=30,000,000-360,000x+750x ² -13x3								
How many widgets should they try to sell in order to maximize their profit?								
a) 0 b) 30	00	c) 1200	d) 15	00				
24) The production costs, in dollars, per week of producing x widgets is given by, C(x)=4000-32x+0.08x ² +0.00006x ³								
and the demand function for the widgets is given by, $D(x)=250+0.02x-0.001x^2$								
What is the marginal revenue when x=200 and x=400?								
a)152, 312	b) 132,-218		c) 164 <i>,</i> -245	d) 112,156				

25) The slope of the tangent at the point (2,-2) to the curve $x^2 + xy + y^2 - 4 = 0$ is given by

a)0 b) 1 c) -1 d) none